BINARY UTILITIES

OPERATOR'S MANUAL

Q Trany&ra

3707 North Canyon Road e Suite 4
Provo, Utah 84604

Phone 801-224-6550

TABLE OF CONTENTS

SECTION 1 General Description
INELrOQUCEION eeeevsscasnnscscssscnscas
Installation INStruCtioONS.ececscscoes

o

SECTION 2 1/0 and Graphics Routines
INErOdUCEiON.veeeescsasassosananensel
GPIBIN.eoeososoovessosssassnssssssasnesld
PLO TS e s e oocenassoosassssssssssesoneeel™
UNLEAV . cosseenosencsanssoncasnasssoseel
MAXI/MINI e eeooooeoocassoncsanonnsanssel
BSWAP . s e v eavossosososoesssssnssssssssld

SECTION 3 Data Conversion Routines
INtroQUCEIiON.sesessoosccassssanseasssad—l
PACK/UNPACK e eooeeccocssessssssessseld—2
DECBIN.eeeoososossoocossancsssscsassessld—3
BINDEC. coecossosocscascsssasssssesesd—d

SECTION 4 Arithmetic and Logic Routines
INErodUCtiON.eeececevecssossassnsnns

ADDB.Q.'..QO.Q'..'.....nc.ooooo..o.

[}
[

SUBB.Q.'...."......."'ll.‘!......

MULB.O.'..D'..Q......"..l.l....l..

ANDB.I.l'......ﬂ"‘...’..'...I...l.

ORB..Q...'.IOQ.......Q..O‘.'...'...

EORBotooooooo..lo.ooonoc..co.ooo'oo

o N R i
!
HEHEHWOONONOULEWDN

ROLB‘...O.t..'..'."........Ol..l'.

RORB......-..-o.......-......a......

ASLB.QQOQOQo'.ao"cho.noo.cooon-cco-0
LSRB-.'..-....'...t.c.n..oo--'o.o.co-l

APPENDIX A Summary of ROUELinNeS...eeseeccccscssaseesA-l

GENERAL DESCRIPTION

Introduction

The 650/750-BNU is a Binary Utility ROM Pack for the Tektronix
4050 Series Graphics Systems. It contains 20 machine laguage
routines that are accessed through the BASIC CALL statement
and are written in assembly language for the greatest possible
speed of execution.

It has six I/0 and graphics routines which can input from the
GPIB into a string variable, plot binary string data, unleave
binary string data, find the minimum and maximum values within
a string of binary data, and reverse the order of byte pairs
in a string of binary data. It has four data conversion
routines which can convert between floating point data in an
array and binary string data in a string variable and numeric
data and ASCII 1's and 0's. It has 10 arithmetic and logic
routines which can perform various arithmetic functions,
logical operations, and shift operations on binary string
data.

The routines in this ROM Pack are explained in the following
manner. The format of the CALL statement is given, and each
of the calling parameters is explained. The general operation
of the routine is then explained.

In the listing of the calling parameters, the letters O and I
following the parameter name indicate whether the parameter is
used as an input to the routine, an output from the routine,
or both. 1In general, input parameters may be variables,
expressions, or constants. Output parameters must be
variables. As far as possible, error checking is done by the
routine to insure correct typing of the calling parameters.

Installation Instructions

The power to the 4050 should be turned off before the ROM Pack
is installed. After the power is shut off, the ROM Pack may
be inserted into a slot in the firmware backpack or a ROM
Expander Unit. Press down gently until the edge card
connector is seated in the receptacle connector.

I/0 AND GRAPHICS ROUTINES

Introduction

There are six I/0 and graphics routines in the 650/750-BNU.
They are GPIBIN, PLOTS$, UNLEAV, MAXI, MINI, and BSWAP. GPIBIN
allows input from the GPIB. Data taken by this routine is
stored in a string variable. PLOT$ draws a graph of data in a
string variable. UNLEAV separates multiplexed data from a
string variable. MAXI and MINI find the value and position of
the largest and smallest datum in a string.

GPIBIN

CALL "GPIBIN",AS,N

A$:0 Target for data
N:I Number of bytes to take

The GPIBIN routine takes data from the GPIE and puts it in a
string variable. This allows two computers to communicate
with each other over the GPIB. The data should be sent with
the WBYTES statement or the PRINT statement. All items
received are put into the string, including addresses.

A$ is a string variable. It must be dimensioned large enough
to contain the data to be read. If not previously
dimensioned, it will be dimensioned to the default length of
72. N is the number of bytes to take. It may be a simple
variable, an expression, or a literal value.

Example, sender: 100 PRINT €@15:"THIS IS A TEST."
110 END
Example, reciever: 100 CALL "GPIBIN",AS$,50

110 A$=SEG(AS$,3,LEN(AS))
120 PRINT AS
130 END

Output: THIS IS A TEST.

In this example, the computers are tied together with the GPIB
cable. The sender outputs the primary listen address for
device 15, which is 47, the secondary address for print, which
is 108, and the string "THIS IS A TEST." The reciever puts
all this data into A$. Line 110 strips off the addresses, and
line 120 prints the received string.

PLOTS

CALL "PLOTS",A$,D,I,S,N,B
A$:I String to be graphed
D:I Device number for graphing
I:I Interval
S:I Starting point
N:I Number of points to plot
B:I Number of bytes per sample

The PLOT$ routine draws a graph of data in a string. AS$ is
the string containing the data to be graphed. D is the device
to draw to. It must be a legal value. I is the incremental
value between plotted points. It should be 1 for
unmultiplexed data. S is the point in the string to begin
graphing at. N is the Number of points to plot. B is the
number of bytes (1 or 2) per sample.

PLOT$ draws a graph of every I'th point starting at number S.
It draws until N points have been graphed. The graph is drawn
to device D. AS$ must be a defined string. All other
parameters may be simple variables, expressions, or literal
values. Before calling PLOTS$, the WINDOW should be set to N
in the horizontal direction and the largest expected sample in
the vertical direction.

Example: 100 DIM As$(100),A(50)
110 FOR I=1 TO 50
120 A(I)=32768*(1+SIN(PI*I/25))
130 NEXT I
140 CALL "PACK",AS$,A,50,2
150 WINDOW 1,50,0,65535
160 CALL "PLOTS$",AS$,32,1,1,50,2
170 END

In this example, lines 100 through 140 create a string of 50
2-byte words of data. Line 150 sets the plotting window to
the correct size. Line 160, PLOT$, plots the data to the
screen using an interval of 1 and a starting location of 1.
This plots all 50 2-byte words and draws one cycle of a sine
wave on the screen.

CRNLEAV

CALL "UNLEAV",A$,BS$,I,S,N,B

A$:I Source string

BS§: Target string

Interval

Starting Point

Number of points to extract
Number of bytes per point

W=
o

The UNLEAV routine extracts every I'th point in AS$ starting at
point S. It puts the extracted points in BS$. It extracts
until N points have been extracted. B is the number of bytes
per point. B should be either 1 or 2. This is useful in
separating multiplexed data.

Example: 100 As$="1234567890"
110 CALL "UNLEAV",AS$,BS$,3,2,2,1
120 PRINT BS
130 END

Qutput: 25

In this example, A$ contains ten characters. UNLEAV extracts
two l-byte points into B$ starting with the second point in AS$
and using an interval of three, This extracts the digits 2
and 5. AS$ is not changed.

MAXI/MINI

CALL "MAXI",A$,M,P,B
CALL "MINI",AS,M,P,B
A Data string

Target for value

Target for position

Number of bytes per sample

o=
HOOH

MAXI finds the value and position of the largest point in AS.
MINI finds the value and position of the smallest point in AS.
The number of bytes per sample (1 or 2) is specified by B. B
may be a simple variable, an expression, or a literal value.
The value of the extreme point is returned in M. The position
in AS$ is returned in P. M and P must be simple variables.

Example: 100 A$="123ABCOal23ABC"
110 CALL "MAXI",A$,M,P,1
120 PRINT "MAX",M,P
130 CALL "MINI",AS,M,P,1
140 PRINT "MIN",M,P

150 END
Qutput: MAX 87 8
MIN 48 7

In this example, MAXI and MINI work on 1 byte data. MAXI
returns the ASCII value and position of the character "a" and
MINI returns the ASCII value and position of the character
IVOII°

BSWAP

CALL "BSWAP",AS
A$:10 Data string

The BSWAP routine exchanges bytes in a string. It exchanges
the first and second byte, the third and fourth bytes, and so
on. The main purpose of this is to allow the other routines
to manipulate data in which the least significant byte is
first in the data string. If the length of the string is odd,
the last byte is unaffected.

Example: 100 A$="1234ABCDE"
110 CALL "BSWAP",AS
120 PRINT AS
130 END

Qutput: 2143BADCE

In this example, BSWAP exchanges every 2-byte pair in A$. The
length is odd, so the last byte is unaffected.

2-6

DATA CONVERSION ROUTINES

Introduction

There are 4 data conversion routines in the 650/730-BNU. They
are PACK, UNPACK, DECBIN, and BINDEC. PACK and UNPACK convert
between floating point data in an array variable and binary
string data in a string variable. DECBIN and BINDEC convert

between numeric data and ASCII 1's and 0's.

PACK/UNPACK

CALL "PACK",AS$,A,N,B
CALL "UNPACK",A$,A,N,B

A$:I0 Target or source string

A:I0 Target or source array

N:I Number of samples to convert
B:I Bytes per sample

The PACK routine compresses data from a floating point numeric
array A to 1 or 2 byte integers and stores the binary result
into string variable A$. The UNPACK routine takes data thus
represented in string variable A$ and converts it to the 8
byte floating point format and stores each number in an
element of the numeric array A.

N is the number of samples to convert. B is the number of
bytes per sample. B should be either 1 or 2. Array A should
be dimensioned to at least N elements. String A$ should be
dimensioned to at least N*B bytes and the length should be at
least N*B for UNPACK. If B is 1, the values PACKed can be no
larger than 255. If B is 2, the values PACKed can be no
larger than 65535.

Example: 100 DIM A(5),As$(10),B(10)
110 FOR I=1 TO 5
120 A(I)=I
130 NEXT I
140 CALL "PACK",AS$,A,5,2
150 CALL "UNPACK",A$,B,10,1
160 PRINT B
170 END

Qutput: 0 1
0 3 0 4
0 5

In this example, PACK packs five elements from array A into AS
using two bytes for each sample. UNPACK unpacks ten l-byte
samples from AS$ into array B. This also demonstrates that the
most significant byte is first.

BINDEC

CALL "BINDEC",ES$,X

E$:I String to convert
X:0 Target variable

The BINDEC routine performs the opposite function of the
DECBIN routine. The input string E$ can be any length up to
16 characters. The binary number represented by this string
of ASCII 1's and 0's is converted into a decimal number and
stored in variable X,

Example: 100 CALL "BINDEC","100010",X
110 PRINT X
120 END

Qutput: 34

In this example, BINDEC converts the string "100010" to
decimal and assigns the result, 34, to X.

M BT,

: Jr e
! LSH - :]L -

Chace LffféM//f /‘:«*75/) !’g"zj n

ARITHMETIC AND LOGIC ROUTINES

Introduction

There are 10 arithmetic and logic routines in the 650/750-BNU.
They are ADDB, SUBB, MULB, ANDB, ORB, EORB, ROLB, RORB, ASLB,
and LSRB., ADDB, SUBB, and MULB perform arithmetic operations
on binary string data. ANDB, ORB, and EORB perform locgical
operations on binary string data. ROLB, RORB, ASLB, and LSRB
perform shift and rotate operations on binary string data.

ADDB

CALL "ADDB",BS$,I,B
CALL "ADDB",BS$,C$,B

B$:I0 Target and string source 1
I:I Decimal source 2
C$:I String source 2

B:I Bytes per sample

The ADDB routine allows adding a single integer value to an
array of packed 1 or 2 byte binary numbers. If also allcws
two equal lengthed strings to be summed together. 1In the
first case, I is the integer number which will be added to
each word in BS$. 1In the second case, C$ is a string of the
same length as BS. Corresponding elements of C$ and B$ are
added together. In both cases, the result is stored back in
B$ and B is the number of bytes per sample and should be 1 or
2.

Example: 100 A$="123ABC"
110 CALL "aDDRBR",AS$,2,1
120 PRINT AS
130 END

Output: 345CDE
In this example, ADDB adds 2 to each byte of A$. This

increases each numeric character by 2 and changes each
alphabetic character to the letter 2 later in the alphabet.

4-2

SUEB

CALL "SUBB",BS$,I,B
CALL "SUBB",B$,C$,B

B$:I10 Target and string source 1
I:I Decimal source 2
C$:1 String source 2

B:I Bytes per sample

The SUBB routine is used in the same way as the ADDB routine.
The SUBB routine subtracts I or C$ from B$ and stores the
difference back into BS.

Example: 100 A$="567XYZ"
110 CALL "SUBB",A$,2.1
120 PRINT AS$
130 END

Output: 345VWX
In this example, SUBB subtracts 2 from each byte in A$, This

decreases each numeric character by 2 and changes each
alphabetic character to the letter 2 earlier in the alphabet.

4-3

MULB

CALL "MULB",BS$,I,B
caLL "MULB",BS,CS$,B

B$:I0 Target and string source 1
I:I Decimal source 2
Cs:I String source 2

B:I Bytes per sample

The MULB routine is used to multiply a series of binary
numbers in a string by an integer or by corresponding binary
numbers in another string. As with ADDB and SUBB, the

each element in B$ is multiplied by I or by the corresponding
element in C$ and put back into B$. B is the number of bytes
per sample and should be 1 or 2.

Example: 100 A$="12345"
110 CALL "MULB",As,2,1
120 PRINT AS
130 END

Output: V bdfhj

In this example, MULB multiplies each byte in A$ by 2. This
doubles the ASCII value of each character.

ANDB

CALL "ANDB",BS$,CS

B$:I0 Target and source string 1
C$:I Source string 2

The ANDB routine allcws two string variables to be ANDed
together. Each byte of B$ is ANDed with the corresponding
byte of C$, and the result is put back into BS.

Example: 100 AS$="abcdgrst"”
110 CALL "ANDB",A$,""""7>>>>"
120 PRINT AS
130 END

Qutput: €BBRD0224

In this example, ANDB performs a logical AND operation on the
strings "abcdgrst" and """"7">>>>". This zeroes bits 6 and 1
of the first four characters of AS and bits 7 and 1 of the
last four.

CRB

CaALL "ORB",BS$,CS

B$:1I0 Target and source string 1
C$:I Source string 2

The ORB routine is used in the same way as the ANDB routine,
but is performs a logical OR between the bytes in B$ and Cs,

Example: 100 A$="1234ABCD"
110 CALL "ORB",AS,"@@e@e n
120 PRINT AS$
130 END

Qutput: grstabcd
In this example, ORB performs a logical OR operation on the

strings "1234ABCD" and "ee@g@e ", This sets bit 7 of the
first four characters in A$ and bit 6 in the last four.

4-6

CALL "EORB",B$,CS$

O Target and source string 1
Source string 2

The EORB routine is also used in the same way as the ANDB and
the ORB routines with the exception that is performs a logical
EXCLUSIVE OR function.

Example: 100 A$="QRST5678"
110 CALL "EORB",AS$," ''''''''n
120 PRINT AS
130 END

Output: 12340VWX
In this example, EORB performs an EXCLUSIVE OR function on the

strings "QRST5678" and "''''''''". This inverts bits 6 and 7
of each byte of A$ exchanging numbers and upper case letters.

4-7

ROLB

CALL "ROCLB",BS$,C,N,B

B$:I0 Data string to be rotated.

C:I0 Initial carry value and target for final carry
N:I Number of bit places to shift

B:I Number of bytes per sample

The ROLB routine is used to perform a Rotate Left bit shift
over 1 or 2 byte binary words. The rotate function causes the
carry generated from the previous shift to be shifted into the
least significant bit position. The carry may be initially
set or cleared by argument C which should be 1 or 0. The
value of C will be used for the carry on the first shift in
each word but will be returned with the actual value of the
carry resulting from the final shift on the last binary word.
N is the number of bit places to shift. B is the number of
bytes per binary word over which shifting is to take place and
should be 1 or 2.

Example: 100 As="123"
110 Cc=1
120 caLL "ROLB",AS$,C,1,1
130 PRINT aSs,C
140 END

Qutput: ceg 0
In this example, ROLB performs a left rotate operation on the

string "123" with an initial carry of 1. This essentially
multiplies the ASCII value of each character by 2 and adds 1.

RORB

CALL "RORB",BS$,C,N,B

B$:I0 Data string to be rotated.

C:IO Initial carry value and target for final carry
N:I Number of bit places to shift

B:I Number of bytes per sample

The RORB routine is the same as the ROLB routine except that
the direction of the shifting is to the right.

Example: 100 As$="ceg"
110 C=0
120 CALL "RORB",AS$,C,1,1
130 PRINT AS$,C
140 END

Output: 123 1
In this example, RORB performs a right rotate operatlon on the
string "ceg" with an initial carry of 0. This is the inverse

operation of the example for ROLB. It essentially divides the
ASCII value of each character by 2.

4-9

ASLB

CALL "ASLB",BS,C,N,B

B$:I0 Data string to be shifted

C:0 Target for final carry

N:I Number of bit places to shift
B:I Number of bytes per sample

The ASLB routine is an Arithmetic Shift Left operation the
same as the ROLB routine except that on each shift a 0 is
shifted into the least significant bit position instead of the
result from the carry. The variable C is returned with the
value of the carry from the last shifting operation. N is the
number of bit places to shift. B is the number of bytes per
word over which the shifting is to take place and should be 1
or 2.

Example: 100 As="123"
110 CALL "ASLB",AS$,C,1,1
120 PRINT AS,C
130 END

OQutput: bdf 0
In this example, ASLB performs a left shift operation on the

string "123". This essentially multiplies the ASCII value of
each character by 2.

LSRB

CALL "LSRB",B$,C,N,B

B$:I0 Data string to be shifted

C:0 Target for final carry

N:I Number of bit places to shift
B:I Number of bytes per sample

The LSRB routine is a Logical Shift Right operation which is
the same as the RORB routine except that it shifts a 0 into
the most significant bit position rather than the result of
the carry. It is also the same as the ASLB routine except
that the direction of the shifting is reversed.

Example: 100 As$="bdf"
110 CALL "LSRB",A$,C,1,1
120 PRINT 2a$,C
130 END

Ouput: 123 0
In this example, LSRB performs a right shift operation on the
string "bdf". This essentially divides the ASCII value of

each character by 2. Note that this is the inverse of the
example for ASLB.

4-11

[[
[el OWE0 1N U WA -
. ¢ & ¢ o e o o w o o

12.

13.
14.
15.
16.
17.
18.
19.
20.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

SUMMARY OF ROUTINES

"GPIBIN",AS$,N
"pLOTS",AS$,D,I,S,N,B
"UNLEAV®",A$,BS,I,S,N,B
"MAXI",AS$,M,P,B
"MINI",AS,M,P,B
"PACK",A$,A,N,B
"UNPACK",AS$,A,N,B
"DECBIN",A$,BS,X
"BINDEC",AS$,X
"ADDB",AS,I,B
"ADDB",AS$,BS$,B
"suBB",As,I,B
"SuBB",AS$,BS,B
"MULB",AS$,I,B
"MULB",AS$,BS$,B
"ANDB",AS,BS$
"ORB",A$,BS
"EORB",AS$,BS
"ROLB",AS$,C,N,
"RORB",AS$,C,N,
"ASLB",AS$,C,N,
"LSRB",AS$,C,N,
"BSWAP",AS

	001
	002
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	A-01

